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Abstract-This paper gives an evaluation ofcrack opening displacements and stress intensity factors
in terms of elementary functions for the problem of a concentrated load outside a circular crack.
The results are obtained for both transversely isotropic and purely isotropic cases. A particular case
of a concentrated load at a point on the normal axis is discussed and compared with the previous
analysis. Some results for stress intensity factors are presented in a graphical form.

INTRODUCTION

The concept of "weight functions" in two-dimensional elastic crack analysis was first
introduced by Bueckner (1970). His weight functions are elastic displacement fields which
equilibrate zero body forces and zero surface tractions but have a stronger singularity at
the crack front than normally admissible displacement fields. Subsequent to Bueckner's
analysis, Rice (1972) showed that weight functions could be evaluated by differentiating
with respect to crack length known displacement solutions for two-dimensional crack
problems. Rice (1972, 1989) has also laid the foundation for three-dimensional weight
function theory based on displacement field variations cause by a first order variation in
the position of a crack front. However, in their simplest interpretation, weight functions
can be considered as the stress intensity factors around a crack front caused by an arbitrarily
located concentrated force.

Since their inception, weight functions have played an important role in fracture
mechanics and a great deal of effort has been aimed at evaluating weight functions for
various crack geometries. In the present study the focus is specifically placed on closed form
solutions to weight functions for three-dimensional geometries. Perhaps the first weight
functions evaluated in closed form are the so-called "crack face weight functions" which
are the stress intensity factors when the concentrated loading acts on the crack faces. Such
solutions for half-plane, penny-shaped and circular external cracks in isotropic bodies can
be extracted from the work of Galin (1961), Uftiand (1965), Tada et al. (1973) and Kassir
and Sih (1975). A few additional solutions not present in these works can be found in more
recent studies such as those of Meade and Keer (1984) and Fabrikant (1989). In previous
investigations, loading was generally either symmetric or antisymmetric about the crack
plane. Thus one can superpose solutions, say for symmetric normal loading and anti
symmetric normal loading, to obtain the solution for concentrated normal loading on one
crack face only.

Though many solutions exist for crack face weight functions for the crack shapes noted
above, few closed form solutions have previously been given for general weight functions.
The books by Tada et al. (1973) and Kassir and Sih (1975) generally summarized the
known closed form results for penny-shaped cracks and circular external cracks when the
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point forces are located off the crack plane on the axis of symmetry. The first general weight
function was probably given by Rice (1985) who evaluated the tensile mode weight function
for a half-plane crack subjected to an arbitrarily located force. However, the result was
given in integral form when the force direction was parallel to the crack plane and ana
lytically when the direction was perpendicular to the plane. Recently, the derivation of the
general weight functions for the penny-shaped and the half-plane crack have been given by
Bueckner (1987) for an isotropic body. The analysis was extended by Gao (1989) to the
circular external crack. In both of these analyses, explicit expressions for the weight func
tions were given only when the forces were located on a crack face (the crack face weight
functions).

In the present analysis, weight functions for the penny-shaped crack are again
considered. Use is made of some recent results by Fabrikant (1989) who derived closed
form expressions for the elastic field of a penny-shaped crack in a transversely isotropic
body loaded by point forces on its faces. These solutions, coupled with the reciprocal
theorem, are used to derive closed form expressions in terms of elementary functions for
the crack opening displacement of a penny-shaped crack in a transversely isotropic body
loaded by an arbitrarily located point force. Explicit closed form expressions are obtained
for the general weight functions of a penny-shaped crack in a transversely isotropic body
by a limiting procedure. Such explicit expressions have not been given previously, even for
the isotropic case.

POINT FORCE LOADING APPLIED TO A CIRCULAR CRACK

Consider a transversely isotropic space weakened by an internal circular crack of
radius a in the plane z = O. Let the crack be subjected to the action of two equal normal
concentrated forces P applied in opposite directions at the points (Po, cPo, O±), Po < a as
shown in Fig. I(a). A complete solution for the field of displacements in elementary
functions for z > 0 is (Fabrikant, 1989)

(1)

(2)

where u = ux+iuy and ux, uy, ware the displacements in the x, y, z directions respectively.
Here Yb Y2' Y3, mb m2 are parameters relating to the five transversely isotropic elastic
constants A I b A 13, A 33, A 44 and A 66 used in Fabrikant (1989). The constant Y3 is real while
Y I and Y2 are complex conjugate, as are ml and m2' The quantities Zk are defined as Zk = z/Yk
for k = I, 2, 3, and hence Z I and Z 2 are complex conjugate also whereas Z 3 is real. The

x
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Fig. lea). Point normal loading.
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Fig, I(b). Point shear loading.
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elastic constant H is real and is defined in eqn (14). The interested reader is referred to
Fabrikant (1988, 1989) or Hanson (1992) for further details.

If two equal tangential concentrated forces T = Tx+iTvare applied to the crack faces
antisymmetrically at the points (Po,¢o,Of), p'J < Q, as shown in Fig. l(b), a complete
solution for the field of displacements in elementary functions for :z > 0 is

u =H~ y, .t, m,~ I { - [/,(Z,)+ ~:1,(z,)Jr+[Ji ,(z,)+ ~:J,(z,)]r}
+~ {[f2{Z3)- ~~ 17(Z3)]T+[f,6(Z3)- ~: 18(Z3)]t}. (3)

(4)

Here Re indicates the real part and the functions Ii(z) are given as

(5)

(6)

(7)

1 ~1(a{t - t) 112)} (9)
- t(l-t)312 tan (li-aZ),f2 ,
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fI6( Z) = -q~ {RR~+o·q;2 tan- I (-RhO) + (a 2_po2) 1/2[~ (f!~S~2i~~ _ 2
q
:) tan I ( .....~~)., (/~ _ a2) 1/2

Here the following notation was used:

il(a, P, z) == II (a) = H[(p + a) 2+ Z2] 1!2 - [(p _a)2+ Z2] 1/2},

lia, p, z) == lia) = Hl(p +a)2+ Z2] 1/2 + [(p _a)2+ Z2] 1/2},

(\ I)

(12)

(= ·f!_ei(<P-<iJ o).

Po
(\3)

An overbar indicates the complex conjugate value and the transversely isotropic elastic
constants in (1--4) are defined as

(\4)

OPENING MODE DISPLACEMENTS AND STRESS INTENSITY FACTORS FOR AN
ARBITRARY FORCE

Consider two systems in equilibrium: let a concentrated force Qz be applied at an
arbitrary point (p, <P, z) in the positive z direction, while in the second system two equal
concentrated opening forces P are applied normal to the crack faces in opposite directions
at the points (Po, <Po, Of). Denote the normal displacement in the space due to the forces P
by IVp, while IVQ. is the crack opening displacement due to force Qz. Note that the term
"crack opening displacement" is used here to denote the difference between the normal dis
placements of the crack faces. Application of the reciprocal theorem to the two systems yields

(\ 5)

which gives the crack opening displacement

(\6)

withf2 defined by (6).
Similarly we can consider two other systems in equilibrium. ,The displacement IVQ is

produced by a concentrated force Q = Q, + iQy applied at an arbitrary point (p, <P, z) and
directed perpendicular to the z axis in the positive x and y directions, while the tangential
displacement Up is due to the opening forces P applied normal to the crack faces in opposite
directions at the points (Po, <Po, Of). The application of the reciprocal theorem for Qx and
Qy separately will give the following crack opening displacement:
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with!l defined by (5).
The SIF can be determined by (Fabrikant, 1989)

and we obtain K. due to Q.. Qx and Qr

Here the functions/;*(z) are given as

where

The explanation for the evaluation of the required limits is given in the Appendix.
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(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

COMBINED SECOND AND THIRD MODE STRESS INTENSITY FACTORS

The solution for this case can still be obtained in an elementary way by using the
reciprocal theorem as above. However, prior to it we shall show how the reciprocal theorem
can be used in the case of complex forces and displacements.

Consider two systems in equilibrium. The first one is an elastic space weakened by an
internal circular crack, with two equal and oppositely directed tangential forces T = Tx +iTy

applied at the points (Po, tPo, O±) on the crack faces [Fig. l(b)]. The second system is the
same space, with the crack faces tractions free, and the horizontal force Q = Qx+iQy
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applied at the point (p, <P, z) in the positive x and y directions. For simplicity of the
transformation to follow, we present eqn (3) in a generalized form

(27)

Here A) and A 2 are the coefficients of T and t respectively. The tangential displacements
at the point (p, <P, z) in the x and y directions caused by T< will be

Similarly the displacements due to the forces Ty are

(u<h. = TyRe[(A 1-A 2)i] = -TyIm(A j -A 2),

(Uy)T, = TyIm[(A 1-A 2)i] = TyRe(A)-A 2).

(28)

(29)

We denote the tangential displacement discontinuity in the x direction due to force Qx as
dx- According to the reciprocal theorem, we have

(30)

The remaining three equations are obtained in a similar manner, and they are

Adding equation (30) with the first expression of (31) multiplied by i yields

(32)

A similar operation with the second and the third expressions in equations (31) results in

(33)

And finally, summation of equations (32) and (33) results in

(34)

A comparison of eqns (27) and (34) suggests that we can obtain the tangential displacement
discontinuity at the point (Po, <Po, 0) due to a tangential force Qapplied at the point (p, <P, z)
by using the expression for tangential displacements at the point (p, <P, z) due to a pair of
equal and oppositely directed tangential forces T applied at the points (Po, <Po, O±). The
procedure is to substitute Q instead of T, and replace the coefficient of Q by its complex
conjugate. Using this rule, we have from eqn (3)

Now consider two other systems in equilibrium. The first system is an elastic space
weakened by an internal circular crack, with two equal and oppositely directed tangential
forces T = Tx +iTy applied at the points (Po, <Po, O±) on the crack faces [Fig. l(b)]. The
second one is the same space, with the crack faces traction free, and the vertical force Qz
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applied at the point (p, tP, z). Let us, for the transformation to follow, present equation (4)
in a generalized form

w = Re(BT) = !(BT+B'i). (36)

Here B is the coefficient of T. The normal displacement at the point (p, ¢, z) in the z

direction due to antisymmetric forces T, will be

The respective displacement due to antisymmetric forces Ty is

WT = iT !(B-B) = - T 1m (B).y y y

(37)

(38)

If we denote the tangential displacement discontinuity in the x and y directions due to a
force Qz as Ax and Ay , respectively, then according to the reciprocal theorem, we have

(39)

Summation of the first expression of equation (39) with the second one multiplied by i
results in

(40)

A comparison of equations (36) and (40) suggests that we can obtain the tangential
displacement discontinuity at the point (Po, tPo, 0) due to a normal force Qz applied at the
point (p, tP, z) by using the expression for tangential displacements at the point (p, ¢, z)
caused by a pair of equal and oppositely directed tangential forces T applied at the points
(Po, tPo, O±). Hence we have from equation (4)

(41)

The stress intensity factors of the second and third kind can be expressed through the
tangential displacement discontinuity (Fabrikant, 1989) as

(42)

Substitution of equations (35) and (41) in equation (42) and taking the limit will give the
desired results for the stress intensity factors.

For application of Qx
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For application of Qy

For application of Qz

Here the functionsj;*(z) are given as

1 {R 2+Z2 (a 2_P )1 /2 3z ( s )* _ _ _k__k Ik _ _ k _ 1
1"4 (Zk) - - R 2 - -- tan ([2 2) 1/2q kq a sq 2k- a

(46)

(47)

(48)

(49)
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(50)

(52)

(53)

where Rb q, s, Ilk and 12k are defined as in eqns (25)-(26), while

R 3= [p2+a2-2pacos (<jJ-<jJo)+d] 1/ 2, (= ~ei(<P-"'o),
a

113 = W(p+a)2+ zn 1/2_ [(p-a)2+ zn 1/2},

123 = ~{[(p+a)2+znI/2+[(p-a)2+d]1/2}.

(54)

(55)

Thus the expressions in eqns (20)-(22), (43)-(48) present all modes of stress intensity
factors, the so called "weight functions" for a penny-shaped crack, in a transversely isotropic
body.

ISOTROPIC SOLUTION

All of the results obtained before are valid for isotropic solids, provided that we take

YI = Y2 = Y3 == 1, H= I-v
2 p= l+v G = (2-v)(l+v) G =~l+v) (56)

nE ' nE ,I nE' 2 nE'

where E is the elastic modulus, and v is Poisson's ratio. The limits were computed according
to L'Hopital's rule. The following scheme was used:
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lim t~ f(zd = _ (l-2v)f(z)+zf'(z),
Y'-Y2-'k=lmk-1 2(I-v)

2 I z
lim L --If(zk) = -f(z)- 2(1 )f'(z).

Y'-Y2-lk=lmk- -v

(57)

(58)

(59)

(60)

Here the following relationships were used

(61 )

and the symbol (') indicates differentiation with respect to z. Application of (57)-(58) to
the expressions (20)-(22) will give us K 1 SIF due to Q" Qx and Qr

For Qz

Q ( 2 /2) 1/2
K - z 0 - 1 fi**( ),- r;;: I z.

2n 2v 2oR2

For Qx

Q ( 2 /2) 1/2
K, = _ x a-I Re [h**(z)].

4n2~(l-v)

For Qy

Q ( 2 P) 1/2
K

1
= - ya - I ImlH*(z))'

4n2~(1-v)

Here the functions/;**(z) are given as

(62)

(63)

(64)

(65)
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Fig. 2. Stress intensity factor K, due to force Q, at an arbitrary point in space.

(66)

Figures 2 and 3 give graphical representations of K] due to Qz and Qx forces, respectively.
If we apply formulae (59)-(60) to the expressions in (43)-(48) we will obtain K 2 and

K 3 due to Q" Qx and Qy-

0.9.-----.,-----.,-----.,------r-----r-------,

~ !
.. r()i.s~9.~J'~9..!::79.,;J " .
f-d=O.2

.................0t::79.A...
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1.5 2

n ••~ •••

2.5 3

pIa

Fig. 3. Stress intensity factor K, due to force Qx at an arbitrary point in space.

SAS 31:15-C
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ForQz

Q (a2-m'/2 [ v
2

]
K 3 == - z h:: lm (2-v)Jr(z)+vfr(z)+vN*(z) + -2-Jr(z). (68)

81t 2(l- v)y 2a - v

For Q.<

K 2= - QAa2-J~Re {ei4>o[v<ls**(z)-Jr(z»+ -2
v

<J,**(z)-ls**(z»]
81t 2(1- v) 2a

+e-i4>{(2-V)(fS**(z)-fr(z» + 2;V (.h**(Z)-fS**(Z»]}, (69)

K 3 = - QAa
2
-J~ 1m {ei<f>o[v<ls**(Z)-J,,**(Z» + -2

v
<J,**(z)-ls**(z»]

81t 2(I-v) 2a

+e-i<f>{(2-V)U;**(z)-fr(z»+ 2;V (fr(z)-.fs**(Z»]}. (70)

For Qy

K2= - Qy(a2-J~Re {-ieit/>o[v<Jr(z)+Jr(z» + -2
v

<Jr(z)+ls**(z»]
81t 2(1- v) 2a

+ ie- i4>{(2-V)(fr(z)+fr(z» + 2;V (h**(Z)+fs**(Z»]}, (71)

K 3 = - Qy(a2-J~lm {-iei4>o[V(Jr(z)+Jr(z» + -2
v

<Jr(z)+Js**(Z»]
81t 2(I-v) 2a

+ie- i4>{(2-V)(fs**(Z)+fr(z»+ 2;V (h**(z)+fs**(z» ]}. (72)

Here the functions/;**(z) are given as

zpa2ei(t/>-4>o) } zpei(t/>-tI>o)
- (a2_1D(J~_paei(4>-4>O»s2 + (/~-paei(tI>-t/>o»)(/~-m

2zpn ei(t/>-t/>o)
(74)
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Fig. 4. Stress intensity factor K 2 due to force Q, at an arbitrary point in space.

(75)

(76)

(78)

Figures 4 and 5 display K 2 and K 3 due to force Q" while Figs 6 and 7 show K 2 and K 3
resulting from force Qx'



E. N. KARAPETIAN and M. T. HANSON

32.5

....;

2

1 j
.. ....f.9~.9"'~9..~~:~

.. , ~ ; ..

1.5

~d=o.2

...;.:'1.~:n
~~\ :...................... ~.d=O.6

... t...~,~.... >.

0.5

2048

80

70

60
N

01......
SO,y.'"

"
~ 40
N

l::
0
0 30..,

pIa
Fig. 5. Stress intensity factor K J due to force Q, at an arbitrary point in space.
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Fig. 6. Stress intensity factor K 2 due to force Qx at an arbitrary point in space.

AXISYMMETRIC CASE AND COMPARISON WITH THE RESULTS REPORTED IN THE
LITERATURE

It is quite interesting to consider the particular case of concentrated forces applied at
the point on the vertical z axes when p = O. In this case the expressions obtained in eqns
(62)-(64) and (67)-(72) will drastically simplify and reduce to:

For Qz

(79)

(80)
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Fig. 7. Stress intensity factor K) due to force Qx at an arbitrary point in space.

(81)

ForQx

2a
2

[ 2 (2-V)Z2]}+ -2--2 2(I-v)- 2 2 . (83)
a +z a +z

(84)

ForQy

(85)

QysincPo { [z -I (a) Z2]
K2= - 2n2(l-v)(2-v)(2a)3/2 3(I-v)(1-2v) titan -; - a2+z2

2a
2

[ 2 (2-V)z2]}+ -2--2 2(l-v)- 2 2 ,(86)
a +z a +z

(1 - 2v)Qy cos cPo [ 3z _ I (a) a2
]

K3= - 2n2(2-v)(2a)3/2 3- -;tan -; + a2+z2 . (87)

AU of the results for this particular case are in perfect agreement with the known results
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Fig. 8. Stress intensity factor K1 due to force Q, at a point on the normal axis.

given in Kassir and Sih (1975). (Because of SIF definitions our results differ by a factor of
.)2.) In spite of this, the graphical representations for eqns (79)-(84) given in Kassir and
Sih (1975) are not quite correct and are repeated here as Figs 8-12.

For example, the calculation of the maximum of the function in equation (79) results
in the following relationship

(88)

where d = z/a. As we can see from (88), when v = 0.5 the value of d = 0.577 corresponds
to the maximum of K I SIF as shown in Fig. 8. It is interesting to note that in Fig. 2 at the
point p = 0, for the same values of v and d, the maximum of K I is identical to that in Fig.
8.

·············1 .. · ! .

............. j...

........ - .

.............. ; ....... ;.... . .. ;... ······f····

Ln=o.o

............b~n3l,:z
L.n=O.3

.....t.:I1=09.s. ,n!.... .. . .. . ;. .. . . .... ~' ...

····f··············;··· ; { ! ..•••...... ! .

20 ; ..

60

40:

100 Ii

oL-i.._-L_C~~~=o=.i.:.---i._~_..L--l
o 2 3 4 5 6 7 8 9 10

d

Fig. 9. Stress intensity factor K 2 due to force Q, at a point on the normal axis.
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d

Fig. II. Stress intensity factor K2 due to force Qx at a point on the normal axis.

The calculation of the maximum of the function in eqn (80) results in the same
relationship as in (88). In Fig. 9 we can see that, when v = 0.2, the value of d = 0.33
corresponds to the maximum of K 2• Also, in Fig. 4 for the same values of v and d at the
point p = 0 the maximum of K 2 is identical to the one in Fig. 9. From Fig. 5 it is apparent
that regardless of the values of v and d, at the point p = 0, K 3 is identically zero.

The calculation of the maximum of the function in eqn (82) results in

j§-v
d= -.

l+v
(89)

Again, comparison of Figs 10 and 3 will indicate the correspondence of the maximum of
K l for the values of, say, v =0.4 and d = 0.655 as a result of (89).

Analogous conclusions could be drawn for the rest of the graphical representations.
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Fig. 12. Stress intensity factor K J due to force Qx at a point on the normal axis.
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APPENDIX

The main limiting quantity, which needs to be computed, is

. { f2(Z) } . { I I _ I ( h)}hm = hm -tan -.
po-o (a-po) 1/2 po-o (a-po) 1/2 R o R o

Since as Po --+ a the argument of tan - I tends to zero, we may use either L'Hopital's rule or the fact that the tan - I

of a small argument is equal to the argument itself, which results in

. { I h} . {Ja2-/iJa2-p~} j2(a2_/i)'!2hm = hm = ------.
po-o (a-po) 1j2 R~ po-o (a-po) 1/2R~a R\/~

Here h, R and I, were defined in eqns (B), (25) and (26) respectively. It is not difficult to check that the use of
L'Hopital's rule renders the same result.

The observation ofthe formulae in (5)-(10) reveals that they all contain either (a 2
_ p~) 1/2 or h as a multiplying

factor. This makes the actual computation of the rest of the limits trivial.


